Sleeve Pull Tab is made using injection molding and stamping processes, and injection molding can produce parts of various sizes and complexity. Small features, intricate geometries, and thin walls can be captured with ease using the injection molding process. Injection-molded components can be post-processed via various surface finishing options such as painting and texturing.
XFP Pull Tab is made using injection molding processes, and injection molding can produce parts of various sizes and complexity. Small features, intricate geometries, and thin walls can be captured with ease using the injection molding process. Injection-molded components can be post-processed via various surface finishing options such as painting and texturing.
Limiting Sheet Metal is made by stamping technology.Materials such as cold-rolled steel (CRS), hot-rolled steel, stainless steel, galvanized, brass, aluminum, and beryllium copper among others. We offer complete secondary operations including powder coating, painting, anodizing, silk screening, and pad printing. Assembly services are also available.
Stamping Limiting Shrapnel is a sheet metal stamping.Materials such as cold-rolled steel (CRS), hot-rolled steel, stainless steel, galvanized, brass, aluminum, and beryllium copper among others. We offer complete secondary operations including powder coating, painting, anodizing, silk screening, and pad printing. Assembly services are also available.
QSFP Cable Pull Tab is made using injection molding processes, and injection molding can produce parts of various sizes and complexity. Small features, intricate geometries, and thin walls can be captured with ease using the injection molding process. Injection-molded components can be post-processed via various surface finishing options such as painting and texturing.
QSFP DAC Pull Tab is made using injection molding processes, and injection molding can produce parts of various sizes and complexity. Small features, intricate geometries, and thin walls can be captured with ease using the injection molding process. Injection-molded components can be post-processed via various surface finishing options such as painting and texturing.
QSFP Pull Tab is made using injection molding processes, and injection molding can produce parts of various sizes and complexity. Small features, intricate geometries, and thin walls can be captured with ease using the injection molding process. Injection-molded components can be post-processed via various surface finishing options such as painting and texturing.
QSFP28 Pull Tab is made using injection molding processes, and injection molding can produce parts of various sizes and complexity. Small features, intricate geometries, and thin walls can be captured with ease using the injection molding process. Injection-molded components can be post-processed via various surface finishing options such as painting and texturing.
Plastic SFP Sleeve Pull Tab is made using injection molding and stamping processes, and injection molding can produce parts of various sizes and complexity. Small features, intricate geometries, and thin walls can be captured with ease using the injection molding process. Injection-molded components can be post-processed via various surface finishing options such as painting and texturing.
QSFP Cable Hand Shank is made using injection molding processes, and injection molding can produce parts of various sizes and complexity. Small features, intricate geometries, and thin walls can be captured with ease using the injection molding process. Injection-molded components can be post-processed via various surface finishing options such as painting and texturing.
QSFP Cable Handle is made using injection molding processes, and injection molding can produce parts of various sizes and complexity. Small features, intricate geometries, and thin walls can be captured with ease using the injection molding process. Injection-molded components can be post-processed via various surface finishing options such as painting and texturing.
QSFP Cable Latch is made using injection molding processes. The primary benefit of using injection precision parts is their ability to maintain exact specifications, leading to enhanced product quality and reliability. Small features, intricate geometries, and thin walls can be captured with ease using the injection molding process. Injection-molded components can be post-processed via various surface finishing options such as painting and texturing.
QSFP DAC Hand Shank is made using injection molding processes, and injection molding can produce parts of various sizes and complexity. Small features, intricate geometries, and thin walls can be captured with ease using the injection molding process. Injection-molded components can be post-processed via various surface finishing options such as painting and texturing.
QSFP DAC Latch is made using injection molding processes. The primary benefit of using injection precision parts is their ability to maintain exact specifications, leading to enhanced product quality and reliability. Small features, intricate geometries, and thin walls can be captured with ease using the injection molding process. Injection-molded components can be post-processed via various surface finishing options such as painting and texturing.
QSFP MPO Hand Shank is made using injection molding and stamping processes, and injection molding can produce parts of various sizes and complexity. Small features, intricate geometries, and thin walls can be captured with ease using the injection molding process. Injection-molded components can be post-processed via various surface finishing options such as painting and texturing.
QSFP MPO Latch is made using injection molding and stamping processes. The primary benefit of using injection precision parts is their ability to maintain exact specifications, leading to enhanced product quality and reliability. Small features, intricate geometries, and thin walls can be captured with ease using the injection molding process. Injection-molded components can be post-processed via various surface finishing options such as painting and texturing.
Stamping QSFP Slider is a sheet metal stamping. Using stamping parts offers several advantages. Firstly, they provide excellent consistency and precision, which is crucial for maintaining quality standards. Secondly, the stamping process is highly efficient, allowing for large-scale production while keeping costs low. Lastly, the versatility of stamping parts means they can be customized to meet specific requirements.
QSFP SR4 Hand Shank is made using injection molding and stamping processes, and injection molding can produce parts of various sizes and complexity. Small features, intricate geometries, and thin walls can be captured with ease using the injection molding process. Injection-molded components can be post-processed via various surface finishing options such as painting and texturing.
QSFP SR4 Latch is made using injection molding and stamping processes. The primary benefit of using injection precision parts is their ability to maintain exact specifications, leading to enhanced product quality and reliability. Small features, intricate geometries, and thin walls can be captured with ease using the injection molding process. Injection-molded components can be post-processed via various surface finishing options such as painting and texturing.
Stamping QSFP Unlock is a sheet metal stamping.Materials such as cold-rolled steel (CRS), hot-rolled steel, stainless steel, galvanized, brass, aluminum, and beryllium copper among others. We offer complete secondary operations including powder coating, painting, anodizing, silk screening, and pad printing. Assembly services are also available.
Stamping QSFP Unlocking is a sheet metal stamping.Materials such as cold-rolled steel (CRS), hot-rolled steel, stainless steel, galvanized, brass, aluminum, and beryllium copper among others. We offer complete secondary operations including powder coating, painting, anodizing, silk screening, and pad printing. Assembly services are also available.
QSFP28 Hand Shank is made using injection molding processes, and injection molding can produce parts of various sizes and complexity. Small features, intricate geometries, and thin walls can be captured with ease using the injection molding process. Injection-molded components can be post-processed via various surface finishing options such as painting and texturing.
QSFP28 Handle is made using injection molding processes, and injection molding can produce parts of various sizes and complexity. Small features, intricate geometries, and thin walls can be captured with ease using the injection molding process. Injection-molded components can be post-processed via various surface finishing options such as painting and texturing.
QSFP28 Latch is made using injection molding processes. The primary benefit of using injection precision parts is their ability to maintain exact specifications, leading to enhanced product quality and reliability. Small features, intricate geometries, and thin walls can be captured with ease using the injection molding process. Injection-molded components can be post-processed via various surface finishing options such as painting and texturing.
SFP EMI Case is a sheet metal stamping.Materials such as cold-rolled steel (CRS), hot-rolled steel, stainless steel, galvanized, brass, aluminum, and beryllium copper among others. We offer complete secondary operations including powder coating, painting, anodizing, silk screening, and pad printing. Assembly services are also available.
SFP EMI Casing is a sheet metal stamping. Using stamping parts offers several advantages. Firstly, they provide excellent consistency and precision, which is crucial for maintaining quality standards. Secondly, the stamping process is highly efficient, allowing for large-scale production while keeping costs low. Lastly, the versatility of stamping parts means they can be customized to meet specific requirements.Using stamping parts offers several advantages. Firstly,
Stamping SFP EMI Finger is a sheet metal stamping. Using stamping parts offers several advantages. Firstly, they provide excellent consistency and precision, which is crucial for maintaining quality standards. Secondly, the stamping process is highly efficient, allowing for large-scale production while keeping costs low. Lastly, the versatility of stamping parts means they can be customized to meet specific requirements.
SFP EMI Housing is a sheet metal stamping.Materials such as cold-rolled steel (CRS), hot-rolled steel, stainless steel, galvanized, brass, aluminum, and beryllium copper among others. We offer complete secondary operations including powder coating, painting, anodizing, silk screening, and pad printing. Assembly services are also available.
Stamping SFP Finger is a sheet metal stamping.Materials such as cold-rolled steel (CRS), hot-rolled steel, stainless steel, galvanized, brass, aluminum, and beryllium copper among others. We offer complete secondary operations including powder coating, painting, anodizing, silk screening, and pad printing. Assembly services are also available.
Stamping SFP RJ45 EMI is a sheet metal stamping.Materials such as cold-rolled steel (CRS), hot-rolled steel, stainless steel, galvanized, brass, aluminum, and beryllium copper among others. We offer complete secondary operations including powder coating, painting, anodizing, silk screening, and pad printing. Assembly services are also available.