Stamping

Showing 21–40 of 118 results

HD Unlock For Optical Module Housing

HD Unlock is sheet metal stamping. Materials such as cold-rolled steel (CRS), hot-rolled steel, stainless steel, galvanized, brass, aluminum, and beryllium copper among others. We offer complete secondary operations including powder coating, painting, anodizing, silk screening, and pad printing. Assembly services are also available.

HD Unlocking For Optical Module Housing

HD Unlocking is sheet metal stamping. Materials such as cold-rolled steel (CRS), hot-rolled steel, stainless steel, galvanized, brass, aluminum, and beryllium copper among others. We offer complete secondary operations including powder coating, painting, anodizing, silk screening, and pad printing. Assembly services are also available.

Injection Plastic Pull Tab For Optical Transceiver Housing

Injection Plastic Pull Tab is made using injection molding and stamping processes, and injection molding can produce parts of various sizes and complexity. Small features, intricate geometries, and thin walls can be captured with ease using the injection molding process. Injection-molded components can be post-processed via various surface finishing options such as painting and texturing.

Injection Pull Tab For Optical module housing

Injection Pull Tab is made using injection molding and stamping processes, and injection molding can produce parts of various sizes and complexity. Small features, intricate geometries, and thin walls can be captured with ease using the injection molding process. Injection-molded components can be post-processed via various surface finishing options such as painting and texturing.

Injection QSFP MPO Pull Tab For Optical module housing

QSFP MPO Pull Tab is made using injection molding and stamping processes, and injection molding can produce parts of various sizes and complexity. Small features, intricate geometries, and thin walls can be captured with ease using the injection molding process. Injection-molded components can be post-processed via various surface finishing options such as painting and texturing.

Injection QSFP SR4 Pull Tab For Optical Transceiver Housing

QSFP SR4 Pull Tab is made using injection molding and stamping processes, and injection molding can produce parts of various sizes and complexity. Small features, intricate geometries, and thin walls can be captured with ease using the injection molding process. Injection-molded components can be post-processed via various surface finishing options such as painting and texturing.

Injection SFP SC Pull Tab For Optical Module Housing

SFP SC Pull Tab is made using injection molding and stamping processes, and injection molding can produce parts of various sizes and complexity. Small features, intricate geometries, and thin walls can be captured with ease using the injection molding process. Injection-molded components can be post-processed via various surface finishing options such as painting and texturing.

Injection SFP Sleeve Pull Tab For Optical Module Housing

Injection SFP Sleeve Pull Tab is made using injection molding and stamping processes, and injection molding can produce parts of various sizes and complexity. Small features, intricate geometries, and thin walls can be captured with ease using the injection molding process. Injection-molded components can be post-processed via various surface finishing options such as painting and texturing.

Injection SFP Sleeve Pull Tab For Optical Module Housing

SFP Sleeve Pull Tab is made using injection molding and stamping processes, and injection molding can produce parts of various sizes and complexity. Small features, intricate geometries, and thin walls can be captured with ease using the injection molding process. Injection-molded components can be post-processed via various surface finishing options such as painting and texturing.

Injection Sleeve Pull Tab For Optical Module Housing

Injection Sleeve Pull Tab is made using injection molding and stamping processes, and injection molding can produce parts of various sizes and complexity. Small features, intricate geometries, and thin walls can be captured with ease using the injection molding process. Injection-molded components can be post-processed via various surface finishing options such as painting and texturing.

Injection Sleeve Pull Tab For Optical Module Housing

Sleeve Pull Tab is made using injection molding and stamping processes, and injection molding can produce parts of various sizes and complexity. Small features, intricate geometries, and thin walls can be captured with ease using the injection molding process. Injection-molded components can be post-processed via various surface finishing options such as painting and texturing.

Injection XFP Pull Tab For Optical Transceiver Housing

XFP Pull Tab is made using injection molding processes, and injection molding can produce parts of various sizes and complexity. Small features, intricate geometries, and thin walls can be captured with ease using the injection molding process. Injection-molded components can be post-processed via various surface finishing options such as painting and texturing. 

Limiting Sheet Metal For Precision Working

Limiting Sheet Metal is made by stamping technology.Materials such as cold-rolled steel (CRS), hot-rolled steel, stainless steel, galvanized, brass, aluminum, and beryllium copper among others. We offer complete secondary operations including powder coating, painting, anodizing, silk screening, and pad printing. Assembly services are also available.

Limiting Shrapnel For Precision Working

Stamping Limiting Shrapnel is a sheet metal stamping.Materials such as cold-rolled steel (CRS), hot-rolled steel, stainless steel, galvanized, brass, aluminum, and beryllium copper among others. We offer complete secondary operations including powder coating, painting, anodizing, silk screening, and pad printing. Assembly services are also available.

Plastic QSFP Cable Pull Tab For Optical Transceiver Housing

QSFP Cable Pull Tab is made using injection molding processes, and injection molding can produce parts of various sizes and complexity. Small features, intricate geometries, and thin walls can be captured with ease using the injection molding process. Injection-molded components can be post-processed via various surface finishing options such as painting and texturing.

Plastic QSFP DAC Pull Tab For Optical Transceiver Housing

QSFP DAC Pull Tab is made using injection molding processes, and injection molding can produce parts of various sizes and complexity. Small features, intricate geometries, and thin walls can be captured with ease using the injection molding process. Injection-molded components can be post-processed via various surface finishing options such as painting and texturing.

Plastic QSFP Pull Tab For Optical Transceiver Housing

QSFP Pull Tab is made using injection molding processes, and injection molding can produce parts of various sizes and complexity. Small features, intricate geometries, and thin walls can be captured with ease using the injection molding process. Injection-molded components can be post-processed via various surface finishing options such as painting and texturing. 

Plastic QSFP28 Pull Tab For Optical Transceiver Housing

QSFP28 Pull Tab is made using injection molding processes, and injection molding can produce parts of various sizes and complexity. Small features, intricate geometries, and thin walls can be captured with ease using the injection molding process. Injection-molded components can be post-processed via various surface finishing options such as painting and texturing.

Plastic SFP Sleeve Pull Tab For Optical Transceiver Housing

Plastic SFP Sleeve Pull Tab is made using injection molding and stamping processes, and injection molding can produce parts of various sizes and complexity. Small features, intricate geometries, and thin walls can be captured with ease using the injection molding process. Injection-molded components can be post-processed via various surface finishing options such as painting and texturing.

QSFP Cable Hand Shank For Optical Transceiver Housing

QSFP Cable Hand Shank is made using injection molding processes, and injection molding can produce parts of various sizes and complexity. Small features, intricate geometries, and thin walls can be captured with ease using the injection molding process. Injection-molded components can be post-processed via various surface finishing options such as painting and texturing.
Start typing to see products you are looking for.
Shopping cart