Optical Transceiver Housing

Showing 265–276 of 380 results

SFP Cable Protection For Optical Transceiver Housing

SFP Cable Protection is made using injection molding processes, and injection molding can produce parts of various sizes and complexity. Small features, intricate SFP Cable Protection is made using injection molding processes, and injection molding can produce parts of various sizes and complexity. Small features, intricate geometries, and thin walls can be captured with ease using the injection molding process. Injection-molded components can be post-processed via various surface finishing options such as painting and texturing. 

SFP Cable Protective Case For Optical Transceiver Housing

SFP Cable Protective Case is made using injection molding processes, and injection molding can produce parts of various sizes and complexity. Small features, intricate geometries, and thin walls can be captured with ease using the injection molding process. Injection-molded components can be post-processed via various surface finishing options such as painting and texturing. 

SFP Cable Sleeve For Optical Transceiver Housing

SFP Cable Sleeve is made using injection molding processes, and injection molding can produce parts of various sizes and complexity. Small features, intricate geometries, and thin walls can be captured with ease using the injection molding process. Injection-molded components can be post-processed via various surface finishing options such as painting and texturing. 

SFP DAC Hand Shank For Optical Module Housing

SFP DAC Hand Shank is made using injection molding processes, and injection molding can produce parts of various sizes and complexity. Small features, intricate geometries, and thin walls can be captured with ease using the injection molding process. Injection-molded components can be post-processed via various surface finishing options such as painting and texturing.

SFP DAC Handle For Optical Module Housing

SFP DAC Handle is made using injection molding processes, and injection molding can produce parts of various sizes and complexity. Small features, intricate geometries, and thin walls can be captured with ease using the injection molding process. Injection-molded components can be post-processed via various surface finishing options such as painting and texturing.

SFP DAC Latch For Optical Module Housing

SFP DAC Latch is made using injection molding processes. The primary benefit of using injection precision parts is their ability to maintain exact specifications, leading to enhanced product quality and reliability. Small features, intricate geometries, and thin walls can be captured with ease using the injection molding process. Injection-molded components can be post-processed via various surface finishing options such as painting and texturing.

SFP DD Hand Shank For Optical Transceiver Housing

SFP DD Hand Shank is made using injection molding processes, and injection molding can produce parts of various sizes and complexity. Small features, intricate geometries, and thin walls can be captured with ease using the injection molding process. Injection-molded components can be post-processed via various surface finishing options such as painting and texturing.

SFP DD Handle For Optical Transceiver Housing

SFP DD Handle is made using injection molding processes, and injection molding can produce parts of various sizes and complexity. Small features, intricate geometries, and thin walls can be captured with ease using the injection molding process. Injection-molded components can be post-processed via various surface finishing options such as painting and texturing.

SFP DD Latch For Optical Transceiver Housing

SFP DD Latch is made using injection molding processes. The primary benefit of using injection precision parts is their ability to maintain exact specifications, leading to enhanced product quality and reliability. Small features, intricate geometries, and thin walls can be captured with ease using the injection molding process. Injection-molded components can be post-processed via various surface finishing options such as painting and texturing.

SFP Dust Plug For Optical Module Housing

SFP Dust Plug is made using injection molding processes. The primary benefit of using injection precision parts is their ability to maintain exact specifications, leading to enhanced product quality and reliability. Small features, intricate geometries, and thin walls can be captured with ease using the injection molding process. Injection-molded components can be post-processed via various surface finishing options such as painting and texturing.

SFP Dust Top For Optical Module Housing

SFP Dust Top is made using injection molding processes, and injection molding can produce parts of various sizes and complexity. Small features, intricate geometries, and thin walls can be captured with ease using the injection molding process. Injection-molded components can be post-processed via various surface finishing options such as painting and texturing.

SFP EMI Case For Optical Module Housing

SFP EMI Case is a sheet metal stamping.Materials such as cold-rolled steel (CRS), hot-rolled steel, stainless steel, galvanized, brass, aluminum, and beryllium copper among others. We offer complete secondary operations including powder coating, painting, anodizing, silk screening, and pad printing. Assembly services are also available.
Start typing to see products you are looking for.
Shopping cart